474 research outputs found

    Advanced Transport Operating System (ATOPS) color displays software description microprocessor system

    Get PDF
    This document describes the software created for the Sperry Microprocessor Color Display System used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global reference section includes procedures and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight cathode ray tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display

    Advanced Transport Operating System (ATOPS) color displays software description: MicroVAX system

    Get PDF
    This document describes the software created for the Display MicroVAX computer used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery of February 27, 1991, known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global references section includes subroutines, functions, and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight Cathode Ray Tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display

    Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    Get PDF
    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions

    Advanced transport operating system software upgrade: Flight management/flight controls software description

    Get PDF
    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU)

    Advanced Transport Operating System (ATOPS) utility library software description

    Get PDF
    The individual software processes used in the flight computers on-board the Advanced Transport Operating System (ATOPS) aircraft have many common functional elements. A library of commonly used software modules was created for general uses among the processes. The library includes modules for mathematical computations, data formatting, system database interfacing, and condition handling. The modules available in the library and their associated calling requirements are described

    Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis.

    Get PDF
    The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis

    Transmission of Onchocerciasis in Wadelai Focus of Northwestern Uganda Has Been Interrupted and the Disease Eliminated

    Get PDF
    Wadelai, an isolated focus for onchocerciasis in northwest Uganda, was selected for piloting an onchocerciasis elimination strategy that was ultimately the precursor for countrywide onchocerciasis elimination policy. The Wadelai focus strategy was to increase ivermectin treatments from annual to semiannual frequency and expand geographic area in order to include communities with nodule rate of less than 20%. These communities had not been covered by the previous policy that sought to control onchocerciasis only as a public health problem. From 2006 to 2010, Wadelai program successfully attained ultimate treatment goal (UTG), treatment coverage of ≥90%, despite expanding from 19 to 34 communities and from 5,600 annual treatments to over 29,000 semiannual treatments. Evaluations in 2009 showed no microfilaria in skin snips of over 500 persons examined, and only 1 of 3011 children was IgG4 antibody positive to the OV16 recombinant antigen. No Simulium vectors were found, and their disappearance could have sped up interruption of transmission. Although twice-per-year treatment had an unclear role in interruption of transmission, the experience demonstrated that twice-per-year treatment is feasible in the Ugandan setting. The monitoring data support the conclusion that onchocerciasis has been eliminated from the Wadelai focus of Uganda

    Treatment response and remission in a double-blind, randomized, head-to-head study of lisdexamfetamine dimesylate and atomoxetine in children and adolescents with attention-deficit hyperactivity disorder

    Get PDF
    The Author(s) 2014. This article is published with open access at Springerlink.com Objectives A secondary objective of this head-to-head study of lisdexamfetamine dimesylate (LDX) and ato-moxetine (ATX) was to assess treatment response rates in children and adolescents with attention-deficit hyperactiv-ity disorder (ADHD) and an inadequate response to methylphenidate (MPH). The primary efficacy and safety outcomes of the study, SPD489-317 (ClinicalTrials.gov NCT01106430), have been published previously. Methods In this 9-week, double-blind, active-controlled study, patients aged 6–17 years with a previous inadequate response to MPH were randomized (1:1) to dose-optimized LDX (30, 50 or 70 mg/day) or ATX (patients \70 kg: 0.5–1.2 mg/kg/day, not to exceed 1.4 mg/kg/day; patients C70 kg: 40, 80 or 100 mg/day). Treatment response was a secondary efficacy outcome and was predefined as a reduction from baseline in ADHD Rating Scale IV (ADHD-RS-IV) total score of at least 25, 30 or 50 %. Sustained response was predefined as a reduction from baseline in ADHD-RS-IV total score (C25, C30 or C50 %) or a Clinical Global Impressions (CGI)–Improvement (CGI–I) score of 1 or 2 throughout weeks 4–9. CGI– Severity (CGI–S) scores were also assessed, as an indicator of remission. Results A total of 267 patients were enrolled (LDX, n = 133; ATX, n = 134) and 200 completed the study (LDX, n = 99; ATX, n = 101). By week 9, significantly (p \ 0.01) greater proportions of patients receiving LDX than ATX met the response criteria of a reduction from baseline in ADHD-RS-IV total score of at least 25 % (90.5 vs. 76.7 %), 30 % (88.1 vs. 73.7 %) or 50 % (73.0 vs. 50.4 %). Sustained response rates were also signifi-cantly (p \ 0.05) higher among LDX-treated patient
    corecore